
Lecture 18: Pseudorandom Functions

PRF

Pseudo-random Functions (PRF)

Let Gm,n,k = {g1, g2, . . . , g2k} be a set of functions such that
each gi : {0, 1}m → {0, 1}n

This set of functions Gm,n,k is called a pseudo-random function
if the following holds.
Suppose we pick g

$←Gm,n,k . Let x1, . . . , xt ∈ {0, 1}m be
distinct inputs. Given (x1, g(x1)), . . . , (xt−1, g(xt−1)) for any
computationally bounded party the value g(xt) appears to be
uniformly random over {0, 1}n

PRF

Secret-key Encryption using Pseudo-Random Functions
Before we construct a PRF, let us consider the following secret-key
encryption scheme.

1 Gen(): Return sk = id $←{1, . . . , 2k}
2 Encid(m): Pick a random r

$←{0, 1}m. Return
(m ⊕ gid(r), r), where m ∈ {0, 1}n.

3 Decid(c̃ , r̃): Return c̃ ⊕ gid(r̃).

Features. Suppose the messages m1, . . . ,mu are encrypted as the
cipher-texts (c1, r1), . . . , (cu, ru).

As long as the r1, . . . , ru are all distinct, each one-time pad
gid(r1), . . . , gid(ru) appear uniform and independent of others to
computationally bounded adversaries. So, this encryption scheme is
secure against computationally bounded adversaries!

The probability that any two of the randomness in r1, . . . , ru are not
distinct is very small (We shall prove this later as “Birthday Paradox”)

This scheme is a “state-less” encryption scheme. Alice and Bob do not
need to remember any private state (except the secret-key sk)!

PRF

Construction of PRF I

We shall consider the construction of
Goldreich-Goldwasser-Micali (GGM) construction.

Let G : {0, 1}k → {0, 1}2k be a PRG. We define
G (x) = (G0(x),G1(x)), where G0,G1 : {0, 1}k → {0, 1}k

Let G ′ : {0, 1}k → {0, 1}n be a PRG

We define gid(x1x2 . . . xm) as follows

G ′ (Gxm(· · ·Gx2(Gx1(id))· · ·)
)

PRF

Construction of PRF II

Consider the execution for x = x1x2x3 = 010. Output z is computed as follows.

sk

G

Go Left because x1 = 0

G

Go Right because x2 = 1

G

Go Left because x3 = 0

G ′

z

PRF

Pseudocodes I
We give the pseudocode of algorithms to construct PRG and PRF
using a OWP f : {0, 1}k/2 → {0, 1}k/2

Suppose f : {0, 1}k/2 → {0, 1}k/2 is a OWP
We provide the pseudocode of a PRG G : {0, 1}k → {0, 1}t ,
for any integer t, using the one-bit extension PRG
construction of Goldreich-Levin hardcore predicate
construction. Given input s ∈ {0, 1}k , it outputs G (s).

G (k , t, s):
1 Interpret s = (r , x), where r , x ∈ {0, 1}k/2

2 Initialize bits = [] (i.e., an empty list)

3 Initialize z = x

4 For i = 1 to t:

1 bits.append(⟨r , z⟩), here ⟨·, ·⟩ is the inner-product
2 z = f (z)

5 Return bits
PRF

Pseudocodes II

We provide the pseudocode of the PRF
gid : {0, 1}m → {0, 1}n, where id ∈ {0, 1}k , using the GGM
construction. Given input x ∈ {0, 1}m, it outputs gid(x).

g(m, n, k , id, x):
1 Interpret x = x1x2 . . . xm, where x1, . . . , xm ∈ {0, 1}
2 Initialize inp = id

3 For i = 1 to m:

1 Let y = G(k, 2k, inp)
2 If xi = 0, then inp is the first k bits of y . Otherwise (if

xi = 1), inp is the last k bits of y .

4 Return G (k , n, inp)

PRF

